If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-1414=0
a = 1; b = 8; c = -1414;
Δ = b2-4ac
Δ = 82-4·1·(-1414)
Δ = 5720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5720}=\sqrt{4*1430}=\sqrt{4}*\sqrt{1430}=2\sqrt{1430}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{1430}}{2*1}=\frac{-8-2\sqrt{1430}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{1430}}{2*1}=\frac{-8+2\sqrt{1430}}{2} $
| A+2=3x23 | | A+2=3x23+ | | 5x2+11x+2=0 | | 10x+3=30 | | 3(x+4)-3=3(x-5) | | 5^x=47 | | 50=8z^2 | | 5x^2-3x+4=2x^2+5 | | 3×n+6=n+8# | | 5m-m=+3m | | t·13=52 | | 15x²-12=-8 | | 9x-108=180 | | 51+51-3x=180 | | 6−3k+4k−14= | | (10x+40)+74=180 | | 10x+40+74=180 | | (10x+8)+74=180 | | 10x+8+74=180 | | 10q=4=3q | | 9a-(5a+1)=11 | | 3x+51=195 | | 6x²-4x+8=0 | | 3n54=0 | | (6x-11)^5/2=243 | | y=25+71 | | 3=(4c-2) | | 3x-12=x+2; | | (0.25)x2=4.08 | | 20^-x/17=9 | | 4x+10=34; | | 10x-2-118=180 |